Mathcamp 2024

Homework 3

Exercise 1. 1. Show that any quadratic extension $K(\sqrt{d})$ is a Galois extension of K.

- 2. Find $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ assuming that Φ_n is the minimal polynomial of ζ_n .
- 3. Find an example of $\mathbb{Q} \subset K \subset L$ such that $\mathbb{Q} \subset K$ is a Galois extension and $K \subset L$ is a Galois extension but $\mathbb{Q} \subset L$ is not a Galois extension (hint: use the first question).
- 4. Show that it is impossible to write ζ_5 as the sum $a + b\sqrt{n} + c\sqrt{m} + d\sqrt{nm}$ with $(n, m) \in \mathbb{Z}^2$.
- 5. Show that $\mathbb{Q}(j, \sqrt[3]{2})$ is a Galois extension of \mathbb{Q} and find its Galois group.
- 6. Find an example of $\mathbb{Q} \subset K \subset L$ such that $\mathbb{Q} \subset L$ is a Galois extension and $K \subset L$ is a Galois extension but $\mathbb{Q} \subset K$ is not a Galois extension.
- 7. Find the lattice of sub-extensions of $\mathbb{Q}(\zeta_{13})$.

Exercise 2. Let p_1, \dots, p_r be distinct primes. Let $K = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_r})$.

- 1. Give an obvious upper bound for $[K : \mathbb{Q}]$.
- 2. Show that K/\mathbb{Q} is a Galois extension.
- 3. Show that $Gal(K/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^m$ for some $m \in \mathbb{N}$.
- 4. Find an obvious lower bound for the number of quadratic sub-extensions of K.
- 5. Conclude (notice that no computations was required).

Exercise 3. Consider $K \subset \mathbb{C}$. Let $P = a_n x^n + \cdots + a_0 \in K[x]$ be a polynomial whose complex roots are $\{\alpha_1, \dots, \alpha_n\}$. Suppose $L = K(\alpha_1, \dots, \alpha_n)$.

- 1. Show that L/K is a Galois extension.
- 2. Show Gal(L/K) acts faithfully on $\{\alpha_1, \dots, \alpha_n\}$.
- 3. Deduce that Gal(L/K) can be seen as a subgroup of \mathfrak{S}_n .
- 4. Find a condition on P which is equivalent to the action of Gal(L/K) being transitive.

We define

$$\operatorname{disc}(P) = a_n^{2n-2} \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

5. Show that

$$\operatorname{disc}(P) = (-1)^{n(n-1)/2} a_n^{n-2} \prod_{i=1}^n P'(\alpha_i)$$

- 6. Compute disc $(ax^2 + bx + c)$ and disc $(x^3 + px + q)$.
- 7. Suppose P is monic. Show that Gal(L/K) viewed as a subgroup of \mathfrak{S}_n is a subgroup of A_n if and only if disc(P) is a square in K.
- 8. Find a polynomial P as above such that Gal(L/K) is $\mathbb{Z}/3\mathbb{Z}$. Solve the equation P(x) = 0. What do you observe?