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1. An algebraic equation and Euler’s Basel problem

Project. (a) Show that the following algebraic equation of degree n,(
2n+ 1

1

)
xn −

(
2n+ 1

3

)
xn−1 +

(
2n+ 1

5

)
xn−2 − . . . = 0

has solutions xk = cot2
kπ

2n+ 1
, for k = 1, 2, . . . , n.

(b) Show that

1

sinx
>

1

x
> cotx, x ∈

(
0,

π

2

)
.

(c) Prove the inequality

π2

6

(
1− 1

2n+ 1

)(
1− 2

2n+ 1

)
< 1+

1

22
+. . .+

1

n2
<

π2

6

(
1− 1

2n+ 1

)(
1 +

1

2n+ 1

)
.

1
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(d) Deduce that

∞∑
n=1

1

n2
=

π2

6
.

2. Wallis’ integral formula and Euler’s Basel problem

Project. (a) Write the binomial series expansion of (1− x2)−1/2 near x = 0.
(b) Derive the Taylor series expansion of arcsinx near x = 0,

arcsinx = x+
∞∑
n=1

1 · 3 . . . · (2n− 1)

2 · 4 . . . · (2n)
· x2n+1

2n+ 1
.

(c) Explain why the series above converges uniformly on the interval [−1, 1].
(d) Derive the following equality

π2

8
= 1 +

∞∑
n=1

1

2n+ 1
· 1 · 3 · . . . · (2n− 1)

2 · 4 · . . . · (2n)

∫ π
2

0

sin2n+1 tdt.

(e) Prove the following Wallis integral formula:∫ π
2

0

sin2n+1 tdt =
2 · 4 · . . . · (2n)

1 · 3 · . . . · (2n− 1)
· 1

2n+ 1
, n ≥ 1.

(f) Derive Euler’s famous formula,

ζ(2) =
∞∑
n=1

1

n2
=

π2

6
.

3. Power series and Euler’s Basel problem

Project. The Basel problem is one of the most famous problems in analysis and
number theory and it concerns the series

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ . . .

The result was proved by Euler in 1734 and is given by

Theorem 3.1 (Euler). We have

∞∑
n=1

1

n2
=

π2

6
.

In this project you will be guided to obtain a proof of this result via generating
functions.

First, prove that the function y(x) = arcsin2 x verifies the second order initial
value problem,
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(1− x2)y′′ − xy′ − 2 = 0, y(0) = y′(0) = 0.

Second, when we look for the power series solution of the above initial value
problem, y(x) =

∑
n≥0 anx

n, prove that

arcsin2 x =
1

2

∞∑
n=1

(2x)2n

n2
(
2n
n

) , |x| ≤ 1.

Third, with a little bit of extra care, prove the convergence of the series above.
Fourth, prove the following Wallis’ formula,∫ π

2

0

sin2n tdt =
π

22n+1

(
2n

n

)
.

Last but not least, combine all these previous steps, and derive the proof of the
Basel problem.

4. Convex functions, Hermite-Hadamard inequality, and Stirling’s
approximation formula

Project. Let f : [a, b] → R be a convex function on [a, b]. First, derive the
Hermite-Hadamard integral inequality,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

We can proceed in the following way:
Let a, b ∈ R, a < b and f : [a, b] → R be a convex function.

(i) Show that for all a ≤ x ≤ y ≤ z ≤ t with x+ t = y + z we have the inequality

f(x) + f(t) ≥ f(y) + f(z).

(ii) Show that the function g : [a, b] → R, g(x) = f(x) + f(a+ b− x), x ∈ [a, b] is

nonincreasing on

[
a,

a+ b

2

]
, and nondecreasing on

[
a+ b

2
, b

]
.

(iii) Show that f is Riemann integrable.
(iv) Show that the function h : [a, b] → R defined by h(x) = f(a+b−x), x ∈ [a, b]

is convex and ∫ b

a

f(x)dx =

∫ b

a

h(x)dx.

(v) Prove that the Hermite-Hadamard inequality holds true.
Furthermore, prove that:
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(a) Show that ∫ k+1

k

log x ≥ log k + log(k + 1)

2
, k ≥ 1.

(b) Show that ∫ k+1/2

k−1/2

log x ≤ log k, k ≥ 1.

(c) Consider the sequence

an =

∫ n

1

log x− log 2− . . .− log(n− 1)− 1

2
log n, n ≥ 1.

Show that an is increasing and 0 ≤ an ≤ 1

2
log

5

4
.

(d) Prove the following inequality:

e
√
n
(n
e

)n

≥ n! ≥
√

4

5
e
√
n
(n
e

)n

, n ≥ 1.

(e) Prove the following formula due to Stirling :

lim
n→∞

n!

nn · e−n
√
2πn

= 1.

5. Limits of sequences of functions and the irrationality of π

Project. Let a, b, n ≥ 1 be integers, and consider the sequence of functions

fn → R → R, fn(x) =
1

n!
xn(bx− a)n, and the sequence of integrals (In)n≥1 defined

by

In =

∫ π

0

fn(x) sinxdx, n ≥ 1.

(a) Show that if u, v : I → R are functions n-times differentiable on I, then

(uv)(n) =
n∑

k=0

(
n

k

)
u(n−k)v(k).

(b) Show that f
(k)
n (0) ∈ Z for all k ≥ 1 and n ≥ 1.

(c) Show that f
(k)
n (a

b
) ∈ Z for all k ≥ 1 and n ≥ 1.

(d) Show that lim
n→∞

In = 0.

(e) Show that if π =
a

b
, with a, b ≥ 1 integers, then In ∈ Z− {0}.

(f) Show that π is an irrational number.
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6. An example of a function which is not differentiable anywhere:
Weierstrass function

Project. Let us consider the function f1 : R → R, f1(x) =
1− |2x− 2[x]− 1|

2
and the functions fn(x) = 4−n+1 · f1(4n−1x), x ∈ R, n ≥ 1.

(a) Show that 0 ≤ f1(x) ≤ 1
2
, for all x ∈ Z and f1(x+ 1) = f1(x), for all x ∈ R.

(b) Show that the function f(x) =
∑∞

n=0 fn(x), x ∈ R is well defined and contin-
uous.

(c) Show that the function f is not monotonic on any interval.
(d) Show that f is not differentiable at any point.

7. Evaluation of ζ(2) and the representation of a number as sum of
squares

Project. Let r(n) be the number of quadruples (x, y, z, t) of integers such that

n = x2 + y2 + z2 + t2.

(a) Show that r(0) = 1 and r(n) = 8
∑

m|n,4∤m

m,m > 0.

(b) Let R(N) =
∑N

n=0 r(n). Show that R(N) is asymptotic to the volume of the
4-dimensional ball, i.e.

R(N) ∼ π2

2
N2.

(c) Evaluate R(N) in terms of the function θ(x) =
∑
m≤x

m
[ x
m

]
.

(d) Show that θ(x) =
ζ(2)

2
x2 +O(x log x) and deduce that

ζ(2) =
∞∑
n=1

1

n2
=

π2

6
.

8. Erdös’ proof of Bertrand’s Postulate

Project.

(a) Let n > 0 and r(p) be the non-negative integer such that

pr(p) ≤ 2n < pr(p)+1.

Show that ∏
n<p≤2n

p |
(
2n

n

)
|

∏
p≤2n

pr(p).
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(b) Show that if p > 2 and 2n
3
< p ≤ n, then

p ∤
(
2n

n

)
.

(c) Show that ∏
p≤n

p < 22n.

(d) Assume there is no prime p in between n and 2n (n < p ≤ 2n). Prove that

22n < (2n)
√
2n+12

4
3
n,

which is impossible for sufficiently large n. Hence there exists at least one
prime in between n and 2n for sufficiently large n.

Applications.

(a) Find an upper bound for all the n’s satisfying the inequality in Problem 8(d).
Deduce that there is at least one prime in between n and 2n for any n ≥ 1.

(b) Let pn denote the n-th prime. Show that for n > 3,

pn < p1 + p2 + . . .+ pn−1.

9. Bernoulli polynomials and generalized Euler-Maclaurin
summation formula

Project. We define the sequence of Bernoulli polynomials Bn(x) and the Bernoulli
numbers Bn as follows: we let B0(x) = B0 = 1, B1 = −1/2 and B1(x) = x + B1.

We then let B2(x) = B2 + 2
∫ x

0
B1(x)dx, where B2 is such that

∫ 1

0
B2(x)dx = 0,

that is to say, B2 = 1
6
and B2(x) = x2 − x + 1/6. In general, assuming we have

defined Bn(x), we let Bn+1(x) = Bn+1 + (n+1)
∫ x

0
Bn(t)dt, where Bn+1 is such that∫ 1

0
Bn+1(x)dx = 0.

(a) For n ̸= 1, show that Bn(1) = Bn(0) = Bn. Conclude that the function
x 7→ Bn({x}) is 1-periodic and continuous. In addition, show that

∫ x

0
Bn({t})dt =

(Bn+1({x})−Bn+1)/(n+ 1) for all n ≥ 1 and x ∈ R.
(b) Given integers a < b and k ≥ 1, and a smooth function f , prove that

∑
a<n≤b

f(n) =

∫ b

a

f(x)dx+
k∑

l=1

(−1)lBl

l!
(f (l−1)(b)−f (l−1)(a))+(−1)k+1

∫ b

a

Bk({x})f (k)(x)

k!
dx.

(c) Let m ∈ Z and k ∈ Z>0. Show that
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Bk({x}) = − k!

(2πi)k

∑
m ̸=0

e2πimx

mk
, k ≥ 2.

(d) For k ≥ 1, show that B2k+1 = 0 and

B2k =
(−1)k−1(2k)!

22k−1π2k

∑
m≥1

1

m2k
=

(−1)k−1(2k)!ζ(2k)

22k−1π2k
,

where ζ(s) =
∑∞

n=1
1
ns ,Re(s) > 1 is the Riemann zeta function.

(e) Show that for n ≥ 1, we have∑
n≤N

1

n
= logN + γ +

1

2N
− 1

12N2
+O(1/N4).

10. An elementary problem equivalent to the Riemann hypothesis

Project. The Riemann hypothesis is one of the most important problems in
mathematics concerning the non-trivial zeros of the zeta function,

ζ(s) =
∞∑
n=1

1

ns
,Re s > 1.

It states that all non-trivial zeros satisfy Re s =
1

2
. In this aspect, there are many

equivalent statements. One of them is given by the following:

(L) : σ(n) =
∑
d|n

d ≤ Hn + exp(Hn) log(Hn),

for all n ≥ 1. Here Hn stands for the n-th harmonic number. The statement
(L) is a modification of an earlier result of Robin which states that the Riemann
hypothesis is equivalent with

σ(n) < eγn log log n,

for all n ≥ 5041. Moreover, Robin was able to prove unconditionally that

σ(n) < eγn log log n+ 0.6482
n

log log n
, n ≥ 3.

Thus, we assume the following two results of Robin,

Theorem 10.1. If the Riemann hypothesis is true, then for each n ≥ 5041 we have

σ(n) ≤ eγn log log n,

where gamma is the Euler-Mascheroni constant.

and
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Theorem 10.2. If the Riemann hypothesis is false, then there exists constants 0 <
β < 1

2
and C > 0 such that

σ(n) ≥ eγn log log n+
Cn log log n

(log n)β

holds for infinitely many n.

Now, in order to prove that our inequality (L) is equivalent to the Riemann
hypothesis, you are asked to prove the following:

Lemma 10.3. For n ≥ 3, we have

exp(Hn) log(Hn) ≥ eγn log log n.

Lemma 10.4. For n ≥ 20, we have

Hn + exp(Hn) log(Hn) ≤ eγn log log n+
7n

log n
.

Finally, deduce that the inequality (L) is equivalent to the Riemann hypothesis.

11. Dirichlet’s hyperbola method and applications

Project.

(a) Prove the Dirichlet hyperbola formula. Let f and g be two arithmetic func-
tions and let F (x) =

∑
n≤x f(n) and G(x) =

∑
n≤x g(n). Show that for any

1 ≤ y ≤ x,∑
n≤x

∑
d|n

f(d)g
(n
d

)
=

∑
n≤y

f(n)G
(x
n

)
+

∑
m≤x/y

g(m)F
( x

m

)
− F (y)G

(
x

y

)
.

(b) Prove that for x ≥ 1,∑
n≤x

d(n) = x log x+ (2γ − 1)x+O(
√
x).

(c) ∑
n≤x

{x

n

}
= (1− γ)x+O(

√
x),

where γ is Euler’s constant.
(d) Show that ∑

n≤x

σ(n) =
π2

12
x2 +O(x log x).


