LINEAR ALGEBRA HOMEWORK 6

LECTURER: BONG H. LIAN

Exercise 0.1. Decide if $A = [e_3, e_1 + e_2, e_2] \in M_3$ is invertible. If so, compute A^{-1} .

Exercise 0.2. You will prove that there is a bijection between the set of conjugation classes of $n \times n$ F-matrices, and the set of isomorphism classes of F[t]-spaces V of $\dim_F V = n$. To each matrix x, define the F[t]-space by the F-algebra homomorphism

$$\varphi_x: F[t] \to \operatorname{End} F^n \equiv M_{n \times n}, \ t \mapsto x.$$

Argue if $h \in \operatorname{Aut}_n$, then $\varphi_{h^{-1}xh}$ defines an isomorphic F[t]-space. Verify that the correspondence $[x] \mapsto [\varphi_x]$ is a bijection from conjugation classes of matrices to isomorphism classes of F[t]-spaces.

Exercise 0.3. WRITE UP For $X \in M_n$, put $k(X) := \dim \ker X$. Assume $X^2 = 0$.

(a) Show that $k(X) \ge n/2$.

In less than 1 page, show that the following:

(a) A conjugation class [X] in sol $(X^2 = 0)$ in M_n is uniquely determined by k(X).

(b) Given any integer $k \ge n/2$, there is a unique conjugation class [X] of such solutions such that k(X) = k.

After doing this right, you will be quite close to solving Project 3, Problems 1 and 2.

Exercise 0.4. WRITE UP Let C_{\bullet} be a complex of F-spaces with $C_0 = F^2$, $C_1 = F^3$, and $C_j = 0$ for all $j \neq 0, 1$. Decide which of the following homology of C_{\bullet} is possible: (a) $H_0 = F$, $H_1 = F^2$.

(b) $H_0 = F^2, H_1 = F^3.$ (c) $H_0 = F, H_1 = F.$

(d) $H_0 = 0, H_1 = F^2$.