LINEAR ALGEBRA HOMEWORK 4

LECTURER: BONG H. LIAN

Assume U, V, W are F-vector spaces. Put End V = Hom(V, V).

Exercise 0.1. Find the dimension of $M_{2,2}$ by giving a basis of this vector space. Generalize your result to $M_{k,l}$.

Exercise 0.2. Let $f, g: V \to V$ be two given maps such that $f \circ g = id_V$. (a) Show that g is injective and f is surjective.

(b) Assume in addition that dim $V < +\infty$ and f is linear. Show that f is injective, hence g is surjective. (Hint: Use COD.)

(c) Conclude that q is bijective, and that $f = q^{-1}$ and $q \circ f = id_V$.

(d) Let $A, B \in M_{n,n}$. Show that if AB = I, then BA = I.

(e) Second proof. Show that if $\ker(BA) = (0)$ then $\ker A = (0)$, hence A is an isomorphism. Conclude that $B = A^{-1}$. (Hint: COD.)

Exercise 0.3. WRITE UP Prove that for $A \in M_{n,n}$, det $A^t = \det A$. You will need the fact that sgn $\sigma^{-1} = \operatorname{sgn} \sigma$ for any bijection of $\{1, 2, ..., n\}$.

Exercise 0.4. Decide if $A = [e_3, e_1 + e_2, e_2] \in M_{3,3}$ is invertible. If so, compute A^{-1} . Here e_i are the standard unit vectors if F^3 .

Exercise 0.5. Let $U \subset V$ be a subspace and $x \in \text{End } V$ such that $xU \subset U$. In 5 lines, prove that there is a canonical map

 $\bar{x}: V/U \to V/U, v + U \mapsto xv + U.$

That is check that this is well-defined. Show it satisfies the following: if $p(t) \in F[t]$, and p(x) = 0 in End V then $p(\bar{x}) = 0$ in End V/U.

Exercise 0.6. By row reduction, compute

$$\det[e_3 + e_2 + e_1, e_1 + e_2, e_2].$$

Redo this it by using linearity of det in each column.

Exercise 0.7. Assume that $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2\times 2}$ is invertible. Find a formula for A^{-1} . That is to say, find each entry of A^{-1} in terms of the 4 entries a_{ij} of A. Be sure to check that you do get $AA^{-1} = A^{-1}A = I$. From this, can you guess the answer for 3×3 matrices.

Exercise 0.8. WRITE UP Prove that the minimal polynomial of a matrix $A \in M_{n,n}$ is conjugation invariant, i.e. $\mu_{g^{-1}Ag}(x) = \mu_A(x)$ for all $g \in \text{Aut}_n$. Conclude that the algebra $F[x]/\mu_A(x)F[x]$ does not change under conjugations of A.

Exercise 0.9. Compute the
$$\mu_A(x)$$
 for $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.

Exercise 0.10. WRITE UP For a given $A \in M_{m \times n}$, propose an algorithm to compute a basis of ker A and im A by row operations. In 10 lines prove that your algorithm is correct.