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RESEARCH PROJECTS

1. Sperner’s lemma and Brouwer’s fixed point theorem

In 1928, Emanuel Sperner found a surprisingly simple proof of Brouwer’s fixed
point theorem whcih states that every continuous map of an n-dimensional ball to
itself has a fixed point. At the heart of his proof is the following combinatorial
lemma. First, we need to define the notions of simplicial subdivision and proper
coloring.

Definition 1.1. An n-dimensional simplex is a convex linear combination of n+ 1
points in a general position, i.e. for given vertices v1, v2, . . . , vn+1, the simplex would
be

S =

{
n+1∑
i=1

αivi : αi ≥ 0,
n∑

i=1

αi = 1

}
.

A simplicial subdivision of an n-dimensional simplex S is a partition of S into
small simplices (cells) siuch that any two cells are either disjoint, or they share a
full face of certain dimension.

Definition 1.2. A proper coloring of a simplicial subdivision is an assignment of
n + 1 colors to the vertices of the subdivision, so that the vertices of S receive all
different colors, and points on each face of S use only the colors of the vertices
defining the respective face of S.

For example, for n = 2 we have a subdivision of a triangle T into triangular cells.
A proper coloring of T assigns different colors to the 3 vertices of T , and inside
vertices on each edge of T use only the two colors of the respective endpoints.
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Lemma 1.3 (Sperner, 1928). Every properly colored simplicial subdivision contains
a cell whose vertices have all different colors.

You are asked to prove Lemma 1.3. As a hint, try to treat the cases n = 1 and
n = 2 separately. A groundbreaking application of Sperner’s lemma is given by

Theorem 1.4 (Brouwer, 1911). Let Bn be the n-dimensional ball. Show that for
any continuous map f : Bn → Bn, there is a fixed point, namely x ∈ Bn such that
f(x) = x.

You are asked to prove Theorem 1.4. As a hint, try to use of Sperner’s lemma
(Lemma 1.3) as a key ingredient.

2. The Borsuk-Ulam antipodal theorem, Kneser graphs and
Lovasz-Kneser theorem

A more powerful topological tool than Brouwer’s theorem is the so-called Borsuk-
Ulam theorem which is a very important tool in combinatorics and algebraic topol-
ogy. Let us denote Sn be the n-dimensional sphere (the surface of the (n + 1)-
dimensional ball).

Theorem 2.1 (Borsuk-Ulam). For any continuous map f : Sn → Rn, there is a
point x ∈ Sn such that f(x) = f(−x).

The proof of this theorem uses algebraic topology. In what follows we will give a
restatement of Theorem 2.1.

Theorem 2.2. For any covering of Sn by n+1 open or closed sets A0, . . . , An, there
is a set Ai which contains two antipodal points, x and −x.

You are asked to show how Theorem 2.2 follows from Theorem 2.1.

Kneser graphs are derived from intersection pattern of a collections of sets. More
precisely, the vertex of Kneser graph consists of all k-sets on a given ground set, and
two k-sets form an edge if they are disjoint.

Definition 2.3. The Kneser graph on a ground set [n] is

KGn,k =

((
[n]

k

)
, {(A,B) : |A| = |B| = k,A ∩B = ∅}

)
Thus, the maximum independent set in KGn,k is equivalent to the maximum in-

tersecting family of k-sets by Erdos-Ko-Rado theorem, we have α(KGn,k) =
(
n−1
k−1

)
=

k
n
|V | for k ≤ n

2
. The maximum clique in KGn,k is equivalent if disjoint k-sets, i.e.

ω(KGn,k) = [n/k].
Another natural questions is, what is the chromatic number of KGn,k? Note that

for n = 3k − 1, the Kneser graph does not have any triangle.

Theorem 2.4 (Lovasz-Kneser). For all k > 0 and n ≥ 2k−1, we have χ(KGn,k) =
n− 2k + 2.

Prove Theorem 2.4. As a hint, try to use Theorem 2.2.
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3. Generating functions and Euler’s Basel problem

The Basel problem is one of the most famous problems in analysis and number
theory and it concerns the series

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ . . .

The result was proved by Euler in 1734 and is given by

Theorem 3.1 (Euler). We have

∞∑
n=1

1

n2
=

π2

6
.

In this project you will be guided to obtain a proof of this result via generating
functions.

First, prove that the function y(x) = arcsin2 x verifies the second order initial
value problem,

(1− x2)y′′ − xy′ − 2 = 0, y(0) = y′(0) = 0.

Second, when we look for the power series solution of the above initial value
problem, y(x) =

∑
n≥0 anx

n, prove that

arcsin2 x =
1

2

∞∑
n=1

(2x)2n

n2
(
2n
n

) , |x| ≤ 1.

Third, with a little bit of extra care, prove the convergence of the series above.
Fourth, prove the following Wallis’ formula,∫ π

2

0

sin2n tdt =
π

22n+1

(
2n

n

)
.

Last but not least, combine all these previous steps, and derive the proof of the
Basel problem.

4. Applications of probabilistic method in Combinatorics: The
inequalities of Bollobas, Tusza and Alon

Solve Problems 6.7.10, 6.7.11 and 6.7.12 from Homework no. 6. These
are important results of the probabilistic method in combinatorics.

5. The friendship theorem

The friendship theorem can be interpreted in a popular language as follows. If
any two people have exactly one friend in common, then there is a person who is
everybody’s friend.

Surprisingly, the friendship theorem is false for infinite graphs (prove it!). Al-
though it is somewhat similar to Erdos-Ko-Rado theorem, the result below requires
some spectral analysis.
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Theorem 5.1 (Friendship theorem). Suppose G is a finite graph where any two
vertices share exactly one neighbor. Then there is a vertex adjacent to all other
vertices.

You are asked to prove Theorem 5.1.

6. Chebyshev’s inequality and vectors in the plane

Chebyshev’s inequality is a very important tool in probability theory as well as
in the probabilistic methods in combinatorics. The statement is as follows.

Theorem 6.1 (Chebyshev’s inequality). Let X be a random variable and let a > 0.
Then

P (|X − E(X)| ≥ a) ≤ 1

a2
(E(X2)− E(X)2).

This theorem will be proved in class in the last chapter. As an application, you
are asked to provide a solution for Problem 6.7.13 from Homework no. 6.

7. Markov’s inequality, graphs of high girth and high chromatic
number

Another simple tool from probability theory which bounds the probability that a
random variable X is too large, based on the expectation E(X).

Theorem 7.1 (Markov’s inequality). Let X be a nonnegative random variable and
a > 0. Then

P (X ≥ a) ≤ 1

a
E(X).

This result will be proved in last week’s lectures. Although it is a result in
probability theorem, it seems that it has applications in graph theory regarding the
chromatic number, χ(G).

Definition 7.2. For a graph G, the chromatic number χ(G) is the smallest c such
that the vertices of G can be colored with c colors with no neighboring vertices re-
ceiving the same color.

We know that for a graph that does not contain any cycles, we have χ(G) ≤ 2.
This is true because every component is a tree that can be colored easily by 2 colors.

More generally, if we consider a graph of girth l, i.e. the length of the shortest
cycle is l. Now, if l is large, this means that starting from any vertex, the graph
would look like a tree within distance l/2 − 1. One might expect that such graphs
can be also colored using s small number of colors, since locally they can be colored
using 2 colors. The next result shows that this is far for being true.

Theorem 7.3. For any k and l, there is a graph of chromatic number and girth
strictly greater than k.

Prove Theorem 7.3.
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8. Cauchy-Davenport theorem and Erdos-Ginzburg-Ziv theorem

A nice application of the principle of inclusion-exclusion is given by the following

Theorem 8.1 (Cauchy-Davenport). Let p ≥ 3 be a prime number. Then for any
two nonempty subsets of Z/pZ we have

|A+B| ≥ min(|A|+ |B| − 1, p).

Here A+B = {a+ b : a ∈ A, b ∈ B}.

You are asked to prove Theorem 8.1. Moreover, this theorem can be generalized
as follows.

For p ≥ 3 prime, and A1, A2, . . . , Ak subsets of Z/pZ we have

|A1 + A2 + . . . Ak| ≥ min(|A1|, |A2|, . . . , |Ak| − k + 1, p).

Using this generalization, you are asked to prove the following

Theorem 8.2 (Erdos-Ginzburg-Ziv). For any 2n − 1 integers we can choose n of
them such that their arithmetic mean is an integer.

9. Extremal combinatorics: The Erdos-Stone theorem

A natural question to ask is what is the maximum number of edges in a graph G
on n vertices, which does not contain a given subgraph H?

We denote this by ex(n,H). For graphs G on n vertices, this question is resolved
up to an additive error o(n2) by the so-called Erdos-Stone theorem.

First, let us recall the definition of a chromatic number.

Definition 9.1. For a graph H, the chromatic number χ(H) is the smallest c such
that the vertices of G can be colored with c colors with no neighboring vertices re-
ceiving the same color.

The chromatic number is a very important parameter of a graph. The graphs of
chromatic number at most 2 are exactly bipartite graphs. In contrast, graphs of
chromatic number 3 are already hard to describe and hard to recognize algorithmi-
cally. For example, the famous four color theorem which states that any graph that
can be drawn in the plane without crossing edges has chromatic number at most 4.

The chromatic number turns out to be closely related to the question of how many
edges are necessary for H to appear as a subgraph.

Theorem 9.2 (Erdos-Stone). For any fixed graph H and fixed ϵ > 0, there is n0

such that for any n ≥ n0 we have

1

2

(
1− 1

χ(H)− 1
− ϵ

)
n2 ≤ ex(n,H) ≤ 1

2

(
1− 1

χ(H)− 1
+ ϵ

)
n2



6 RESEARCH PROJECTS

In particular, for bipartite graphs H, which can be colored with 2 colors, we
get that ex(H,n) ≤ ϵn2 for any ϵ > 0 and sufficiently large n, so Theorem 10.2
only says that the extremal number is very small compared to n2. We denote this
by ex(H,n) = o(n2). For graphs H of chromatic number 3, we get ex(n,H) =
1
4
n2 + o(n2).

First, you are asked to prove the following Lemma 9.3 given below

Lemma 9.3. Fix k ≥ 1, 0 < ϵ < 1/k and t ≥ 1. Then there is n0(k, ϵ, t) such that
any graph G with n ≥ n0(k, ϵ, t) vertices and m ≥ 1

2
(1 − 1/k + ϵ)n2 edges contains

k + 1 disjoint sets of vertices A1, A2, . . . , Ak+1 of size t, such that any two vertices
in different sets Ai, Aj are joined by an edge.

You are asked to prove Theorem 9.2. You can use Lemma 9.3 as a key ingre-
dient.

10. Variational definition of eigenvalues and the independence
number

Linear algebra is an essential tool in dealing with combinatorial problems. Apart
from the classical definition of an eigenvalue of a a matrix, we give an equivalent
variational characterization of eigenvalues.

Lemma 10.1. The k-th largest eigenvalue of a matrix A ∈ Mn(R) is given by

λk = max
dim(U)=k

min
x∈U

xTAx

xTx
= min

dim(U)=k−1
max
x⊥U

xTAx

xTx
.

Here the maximum/minimum is taken over all subspaces U of a given dimension,
and over all nonzero vectors x in the respective subspace.

You are asked to prove Lemma 11.1. Using the above result (Lemma 10.1) one
can find an upper bound for the indepedence number.

Theorem 10.2. For a d-regular graph with smallest (most negative) eigenvalue λn,
the independence number is

α(G) ≤ n

1− d/λn

.

You are asked to prove Theorem 10.2.
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