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In his works on the quadratic reciprocity law, Gauss introduced the so-called Gauss sums. In
order to compute these sums, Gauss was lead to evaluate the number of solutions of congruences
of the following types:

ax3 − by3 ≡ 1 mod p, ax4 − by4 ≡ 1 mod p, y2 ≡ ax4 − b mod p.

Weil studied this problem for the more general equation
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The number of solutions is encoded in the ζ-function for the algebraic variety defined by this
equation. Weil conjectured that the ζ-function of a smooth projective variety could be expressed
in terms of the actions of the Frobenius correspondence on the cohomology groups of the algebraic
variety, and the ζ-function should satisfy the Riemann hypothesis. These properties of the ζ-
function give rise to the optimal estimate for number of rational points of the algebraic variety.
The Weil conjecture was later proved by Grothendieck and Deligne using the `-adic cohomology
theory. In this course, we will express the ζ-function of (1) in terms of Gauss sums, and verify the
Weil conjecture directly.
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