
Number Theory

We will start with the notion of a formal power series. While it is important
that identities like
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are equalities of real-valued functions, it is also important to be able to treat such
equations as purely algebraic identities. Doing so allows one to prove, for example,
that ex+y = exey, this identity being a simple consequence of the binomial theorem.

Next we will introduce the Bernoulli numbers bk. They are defined by the identity
of formal power series
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We will also consider the Bernoulli polynomials Bk(x), which are defined by
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The Bernoulli numbers and Bernoulli polynomials have many remarkable proper-
ties. For example, the finite sum

1 + 2k + 3k + · · ·+Nk

has a simple expression in terms of Bernoulli polynomials, and the infinite sum

1 + 2−k + 3−k + 4−k + . . .

has a simple expression in terms of Bernoulli numbers when k is even. The latter
sum is actually the value at s = k of the Riemann zeta function ζ(s), a function
which is at the heart of the most famous unsolved problem in mathematics.
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