LINEAR ALGEBRA HOMEWORK 5 – FRIDAY 8/3

LECTURER: BONG H. LIAN

Exercise 0.1. Prove that for $A \in M_{n,n}$

 $\det A^T = \det A.$

Thus it doesn't matter whether we think of det as a function of n row vectors or n column vectors.

(Hint: Clearly understand the cases n = 2, 3 first. Observe that $Perm(3) \equiv S_3 \rightarrow S_3$, $\sigma \mapsto \sigma^{-1}$, is a bijection.)

Exercise 0.2. Let $x, y \in M_{n,n}$. Recall that x, y are translates of each other iff there exists an invertible matrix g such that $y = g^{-1}xg$. Prove your assertions. (a) Suppose det $x \neq det y$. Can x, y be translates of each other, i.e. can [x] = [y]?

(b) Suppose det $x = \det y$. Does this imply that [x] = [y]?

Exercise 0.3. WRITE UP Let $x_0 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and let $[x_0]$ be its translation class in $M_{2,2}$. Show that there is a surjective map

 $\pi: [x_0] \to \mathbb{P}^1 := the \ set \ of \ all \ lines \ in \ F^2$

given by $x \mapsto \ker x$. Here, a line in F^2 is a one dimensional subspace of F^2 . Can you describe the subset

$$\pi^{-1}(\ker x) = \{ y \in [x_0] | \ker y = \ker x \}$$

for each x? Prove your assertions.

Exercise 0.4. Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2,2}$, and let t be a variable. Write down the polynomial function $\det(A - tI) \in F[t]$. What is its degree? What is the coefficient of the highest power of t and the lowest power of t for this polynomial? Generalize your answers to $n \times n$ matrices.

Exercise 0.5. WRITE UP Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in M_{2,2}(\mathbb{C})$. Find an invertible matrix B such that $B^{-1}AB$ is upper triangular.

Exercise 0.6. WRITE UP Let A be an F-algebra and V be a finite dimensional A-space. Show that V is a quotient A-space of V. In other words, there exists a surjective A-space homomorphism

$$A^{\oplus k} \twoheadrightarrow V$$

where $A^{\oplus k}$ is the direct sum of k copies of A, regarded as an A-space. Show that if A is a semi-minimal as an A-space, then any A-space V is semi-minimal.