LINEAR ALGEBRA HOMEWORK 1

LECTURER: BONG H. LIAN

Exercise 0.1. WRITE UP by July 18, 2018 Recall that for $a, b \in \mathbb{Z}$, $a \neq 0$, the fraction b/a is defined to be the set of equations

$$nx = m$$
, $n, m \in \mathbb{Z}$, $n \neq 0$, $s.t.$ $nb = ma$.

Prove that b/a is not empty. Prove that two such sets b/a and b'/a' are either disjoint or equal.

Exercise 0.2. Verify that the multiplication rule given by

 $\times : \mathbb{Q}^2 \to \mathbb{Q}, \ (b/a, b'/a') \mapsto (bb')/(aa')$

is well-defined. Note that this rule is generalizes the usual rule of multiply integers, *i.e.* grouping apples.

Exercise 0.3. Consider the map $\iota : \mathbb{Z} \to \mathbb{Q}$, $n \mapsto n/1$. Is ι injective, surjective? Prove your assertions. Verify the identities

$$(1) = 1/1, \ \iota(nn') = \iota(n)\iota(n'), \ n, n' \in \mathbb{Z}.$$

Also express $\iota(n+n')$ in terms of $\iota(n)$, $\iota(n')$.

L

Exercise 0.4. Assume we have a field \mathbb{C} with properties ($\mathbb{C}1$)-($\mathbb{C}3$). Use N1-N9 to verify that for $z, w \in \mathbb{C}$, z + w = 0 iff w = -z. Now show that for $x, y \in \mathbb{R}$

$$-(x+iy) = -x+i(-y)$$

In fact, in any field F, N1-N9 imply that -(a+b) = (-a)+(-b) and -(ab) = (-a)b.

Exercise 0.5. WRITE UP by July 20, 2018 If $u = (u_1, u_2), u' = (u'_1, u'_2) \in \mathbb{R}^2$ are two solutions to $x_1 + x_2 = 1$, what can we say about u - u'? Find a nice (as nice as you can think of) bijection between solution set of this equation and the solution set of its homogeneous "partner" $x_1 + x_2 = 0$. Can you interpret your bijection geometrically? How would you generalize your results?

Exercise 0.6. Let F be a field. For $X, Y, Z \in F^2$ and $\lambda, \mu \in F$, verify that V1. (X + Y) + Z = X + (Y + Z)V2. X + Y = Y + XV3. X + 0 = XV4. X + (-X) = 0V5. $\lambda(X + Y) = \lambda X + \lambda Y$ V6. $(\lambda + \mu)X = \lambda X + \mu X$ V7. $(\lambda \mu)X = \lambda(\mu X)$ V8. 1X = X. The same holds true for F^n .

Suggestion: Think about exactly what facts about F you need to use to prove each of these statements.