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Triangular numbers
Everyone is familiar with the sum

1 + 2 + · · ·+ n =
n(n + 1)

2
.

These numbers are called the triangular numbers.

For example,

1 =
1(1 + 1)

2
= 1

1 + 2 =
2(2 + 1)

2
= 3

1 + 2 + 3 =
3(3 + 1)

2
= 6

1 + 2 + 3 + 4 =
4(4 + 1)

2
= 10

1 + 2 + 3 + 4 + 5 =
5(5 + 1)

2
= 15
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Pyramidal numbers
Many of you will also be familiar with the pyramidal numbers: these are
the sums of squares:

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

For example,

12 =
1(1 + 1)(2 + 1)

6
= 1

12 + 22 =
2(2 + 1)(4 + 1)

6
= 5

12 + 22 + 32 =
3(3 + 1)(6 + 1)

6
= 14

12 + 22 + 32 + 42 =
4(4 + 1)(8 + 1)

6
= 30

12 + 22 + 32 + 42 + 52 =
5(5 + 1)(10 + 1)

6
= 55
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Generalizations?

Is there a general story here?

If k is a natural number larger than 2, is there a formula for the sum of
the kth powers of the first n natural numbers?

1k + · · ·+ nk =???
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Nicomachus
Nicomachus (Νικο΄μαχος) was a Hellenistic mathematician who lived
between around 60 CE and 120 CE in the Roman city of Gerasa, east of
the Jordan River.

He was a Neopythagorean, who believed in religious doctrines based on the
Greek philosophers Pythagorus and Plato. Among their beliefs, they
associated God with the number One.
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Nicomachus’s Theorem

Nicomachus gave a formula for the sum of cubes:

13 + 23 + · · ·+ n3 =
(
1 + 2 + · · ·+ n

)2
This is a beautiful formula but it doesn’t really give an idea of how to
understand the general sums

1k + · · ·+ nk =???

The proof uses mathematical induction.

For n = 1, both sides of the equation

13 + 23 + · · ·+ n3 =
(
1 + 2 + · · ·+ n

)2
equal 1.
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Suppose we have proved that

13 + 23 + · · ·+ n3 =
(
1 + 2 + · · ·+ n

)2
We want to prove that replacing n by n + 1, both sides increase by the
same amount, namely (n + 1)3.

Consider the square with sides

1 + 2 + · · ·+ n + (n + 1) =
(n + 1)(n + 2)

2
,

and subdivide the sides into two segments, of length

1 + 2 + · · ·+ n =
n(n + 1)

2

and n + 1 respectively.
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n(n + 1)/2 n + 1

n(n + 1)/2

n + 1

A B

C D

We see that

(1 + 2 + · · ·+ n + (n + 1))2 = A + B + C + D

= (1 + 2 + · · ·+ n)2 +
n(n + 1)2

2
+

n(n + 1)2

2
+ (n + 1)2

= (13 + 23 + · · ·+ n3) + n(n + 1)2 + (n + 1)2

= (13 + 23 + · · ·+ n3) + (n + 1)3.
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Johannes Faulhaber
The next steps in this subject were taken by Johannes Faulhaber
(1585-1635), a mathematician who was born and lived in the German city
of Ulm.
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Faulhaber’s Theorem

Faulhaber showed that for any fixed natural number k, the sum of powers

Σk(n) = 1k + 2k + · · ·+ nk ,

thought of as a function of n, is a polynomial of degree k + 1.

We have already seen this explicitly for k = 0, 1, 2 and 3, where the
polynomials are respectively n, n(n + 1)/2, n(n + 1)(2n + 1)/6, and
n2(n + 1)2/4.

In other words, there are numbers bk,i for i = 1, . . . , k + 1, such that

1k + 2k + · · ·+ nk = bk,k+1n
k+1 + bk,kn

k + · · ·+ bk,2n
2 + bk,1n.

It turns out that all of the coefficients of these polynomials are rational
numbers.

(The constant term bk,0 is absent because both sides vanish when n = 0.)
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When we take k = 4, something interesting happens — the coefficient of
the linear term n has quite a large denominator.

Σ4(n) =
n5

5
+

n4

2
+

n3

3
− n

30
.

Let’s prove this special case of Faulhaber’s Theorem: the general case is
actually proved in exactly the same way.

Suppose that the left-hand side is a polynomial in n of degree 5:

Σ4(n) = b4,5n
5 + b4,4n

4 + b4,3n
3 + b4,2n

2 + b4,1n

If we can find values of b4,k such that both sides are equal for n = 0, and
the right-hand side jumps by n4 as we go from n − 1 to n, then the
formula will be proved.

The case n = 0 is easy: both sides vanish.
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It remains to check that

(
b4,5n

5 + b4,4n
4 + b4,3n

3 + b4,2n
2 + b4,1n

)
−

(
b4,5(n − 1)5 + b4,4(n − 1)4 + b4,3(n − 1)3 + b4,2(n − 1)2 + b4,1(n − 1)

)
= n4.

The left-hand side equals

b4,5(n
5 − (n − 1)5) + b4,4(n

4 − (n − 1)4) + b4,3(n
3 − (n − 1)3) + b4,2(n

2 − (n − 1)2) + b4,1(n − (n − 1))

= b4,5(5n
4 − 10n3 + 10n2 − 5n + 1) + b4,4(4n

3 − 6n2 + 4n − 1) + b4,3(3n
2 − 3n + 1) + b4,2(2n − 1) + b4,1

The induction step consists of showing that the numbers b4,i may be
chosen in such a way that this equals n4.
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To do this, it suffices to solve the simultaneous linear equations

5b4,5 = 1

−10b4,5 + 4b4,4 = 0

10b4,5 − 6b4,4 + 3b4,3 = 0

−5b4,5 + 4b4,4 − 3b4,3 + 2b4,2 = 0

b4,5 − b4,4 + b4,3 − b4,2 + b4,1 = 0.

It is easy to see that these have a unique solution, in which each
coefficient b4,i is a rational number:

(b4,5, b4,4, b4,3, b4,2, b4,1) = (1/5, 1/2, 1/3, 0,−1/30).

Two things about this solution are striking: the quadratic term is missing
(that is, b4,2 = 0), and the linear term has the peculiar coefficient −1/30.
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Let us list the coefficients bk,i in a table for k = 1, . . . , 6:

k bk,1 bk,2 bk,3 bk,4 bk,5 bk,6 bk,7
0 1
1 1/2 1/2
2 1/6 1/2 1/3
3 0 1/4 1/2 1/4
4 −1/30 0 1/3 1/2 1/5
5 0 −1/12 0 5/12 1/2 1/6
6 1/42 0 −1/6 0 1/2 1/2 1/7

The numbers in the left column have a name: they are the Bernoulli
numbers Bk .

Along the diagonals, this table shows some nice patterns. A little
experimentation shows that the following conjectural formula holds
explains all of the diagonal patterns in the table:

bk,i =
k!

i !

Bk−i+1

(k − i + 1)!
.
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Jakob Bernoulli

Jakob Bernoulli (1645–1705) was a member of a famous family of
mathematicians in the Swiss city of Basel. He wrote an important book
Ars Conjectandi (The Art of Conjecture) on probability and games of
chance, and discovered the number e.
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Jakob Bernoulli gave the first description of the numbers now named after
him. In modern language, the numbers Bk are defined recursively by

k =
(k+1

1

)
B1 + · · ·+

(k+1
k−2

)
Bk−2 +

(k+1
k−1

)
Bk−1 +

(k+1
k

)
Bk .

1 = 2B1 , so that B1 = 1/2

2 = 3B1 + 3B2 , so that B2 = 1/6

3 = 4B1 + 6B2 + 4B3 , so that B3 = 0

4 = 5B1 + 10B2 + 10B3 + 5B4 , so that B4 = −1/30

It is not hard to calculate a few more of these numbers for yourself.
Eventually, you reach the bizarre number B12 = −691/2730: this hints
that the Bernoulli numbers present a richer structure than most sequences
of numbers you will have met in mathematics.
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The Bernoulli numbers have many remarkable properties.

Theorem

If k > 1 is odd, then Bk = 0.

To see this, we extend the function Σk(n) to negative values of n. Observe
that Σk(n) is completely determined by the formulas Σk(0) = 0 and
Σk(n)− Σk(n − 1) = nk . This makes it natural to set

Σk(−n) = (−n + 1)k + (−n + 2)k + · · ·+ (−1)k .

This gives the remarkable identity

Σk(−n) = (−1)kΣk(n − 1).
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If k is odd, we can calculate Σk(n) + Σk(−n) in two different ways: if k is
odd, the above identity shows that

Σk(n) + Σk(−n) = Σk(n)− Σk(n − 1) = nk .

On the other hand, Faulhaber’s Theorem shows that

Σk(n) + Σk(−n) = 2
(
bk,kn

k + bk,k−2n
k−2 + bk,k−4n

k−4 + · · ·+ bk,1n
)
.

It follows that if k > 1, Bk = bk,1 = 0 (and B1 = 1/2, but we already
knew this).
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Theorem

The signs of the even Bernoulli numbers oscillate: B2, B6, . . . , are
positive, and B4, B8, . . . , are negative.

There are two ways to prove this result.

The first is as a corollary of the following theorem.

Theorem

The derivative
dk−1 tan(x)

dxk−1

∣∣∣∣
x=0

equals (−1)k/2−12k(2k − 1)Bk/k. It vanishes if k is odd, and is a positive
integer if k is even.

The proof of this theorem uses differential calculus and mathematical
induction: it depends on the ordinary differential equation

d tan(x)

dx
= 1 + tan2(x).
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The second proof is as a consequence of a formula due to Euler. If s > 1,
the infinite sum

ζ(s) = 1−s + 2−s + 3−s + . . .

converges. (This is shown using the comparison theorem from integral
calculus.)

This sum is Riemann’s zeta-function. It is an important tool in the study
of prime numbers, because of Euler’s product formula

1

ζ(s)
=

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
. . .

(
1− 1

ps

)
. . .

The infinite product here is over all prime numbers. This formula is
actually equivalent to the unique factorization theorem for the integers.

Obviously, ζ(s) > 1; applying the comparison theorem from integral
calculus to the definition of ζ(s), it also follows that ζ(s) < s

s−1 .
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If k > 0 is even, Euler showed that

2 ζ(k) = −(2πi)k
Bk

k!
.

This shows that the absolute value of the even Bernoulli numbers grows
very fast as k increases: roughly as fast as k!

The Bernoulli number B14 = 7/6 is the first one such that |Bk | > 1. If you
didn’t have the idea of calculating out at least this far, you would never
guess that the Bernoulli numbers increase rapidly in size with increasing k.

This shows the importance of old-fashioned calculation in mathematics:
the great mathematicians are often the ones who have the patience and
skill to calculate out further than the rest of us. A good example is Euler.
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Proof of Bernoulli’s formula

Theorem

For any fixed natural number k, the sum of powers

Σk(n) = 1k + 2k + · · ·+ nk ,

thought of as a function of n, is the following polynomial in n of degree
k + 1:

1
k+1

{
nk+1 +

(k+1
1

)
B1n

k + · · ·+
(k+1
k−1

)
Bk−1n

2 +
(k+1

k

)
Bkn

}
.

The proof uses the binomial theorem and mathematical induction.

Bernoulli numbers 22 / 43



We start with a trick:

Σk+1(n) + (n + 1)k+1 − 1k+1 = 2k+1 + · · ·+ (n + 1)k+1

= (1 + 1)k+1 + · · ·+ (n + 1)k+1

=
(

1 +
(
k+1
1

)
+ · · ·+

(
k+1
k

)
+ 1
)

+
(

1 +
(
k+1
1

)
2 + · · ·+

(
k+1
k

)
2k + 2k+1

)
+ . . .

+
(

1 +
(
k+1
1

)
n + · · ·+

(
k+1
k

)
nk + nk+1

)
= Σ0(n) +

(
k+1
1

)
Σ1(n) + · · ·+

(
k+1
k

)
Σk(n) + Σk+1(n).

Cancelling the common term Σk+1(n) from both sides, we obtain the
formula

(n + 1)k+1 − 1 = Σ0(n) +
(k+1

1

)
Σ1(n) + · · ·+

(k+1
k

)
Σk(n).
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By the induction hypothesis, we know that Bernoulli’s formula holds for
j < k :

Σj(n) = 1
j+1

(
nj+1 +

(j+1
1

)
B1n

j +
(j+1

2

)
B2n

j−1 + · · ·+
(j+1

j

)
Bjn
)
.

Inserting this into the previous formula, and expanding the left-hand side
using the binomial theorem, we see that

nk+1 +
(k+1

k

)
nk + · · ·+

(k+1
1

)
n = n

+ 1
2

(k+1
1

) (
n2 +

(2
1

)
B1n

)
+ . . .

+ 1
k

(k+1
k−1

) (
nk +

(k
1

)
B1n

k−1 +
(k
2

)
B2n

k−2 + · · ·+
( k
k−1

)
Bk−1n

)
+
(
nk+1 +

(k+1
1

)
bk+1,kn

k +
(k+1

2

)
bk+1,k−1n

k−1 + · · ·+
(k+1

k

)
bk,1n

)
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Let us illustrate how this equation establishes the induction step, by
comparing the coefficients of n on both sides:(k+1

1

)
= 1 + 1

2

(k+1
1

)(2
1

)
B1 + · · ·+ 1

k

(k+1
k−1

)( k
k−1

)
Bk−1 +

(k+1
k

)
bk,1.

A little massaging (rewrite the binomial coefficients in terms of factorials
and make several cancellations) identifies this with the equation defining
Bk in terms of the lower Bernoulli numbers:

k =
(k+1

1

)
B1 + · · ·+

(k+1
k−2

)
Bk−2 +

(k+1
k−1

)
Bk−1 +

(k+1
k

)
bk,1.

The proof of Bernoulli’s formula for bk,i when i > 1 is similar, but it’s best
to try to work out the details yourself.
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The Von Staudt-Clausen Theorem

The following remarkable theorem was proved independently by the
German mathematicians Von Staudt and Clausen in 1840. (This theorem
was not in my talk at the Tsinghua Math Camp, but I thought some of
you would enjoy seeing it.)

Theorem

For every k > 0, the number

Bk + sum of all fractions
1

p
such that p is a prime and (p − 1)|k

is an integer.

Remember that the symbol (p − 1)|k means that k is divisible by p − 1.
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For example,

B1 + 1
2 = 1 B2 + 1

2 + 1
3 = 1 B4 + 1

2 + 1
3 + 1

5 = 1

B6 + 1
2 + 1

3 + 1
7 = 1 B8 + 1

2 + 1
3 + 1

5 = 1

B10 + 1
2 + 1

3 + 1
11 = 1 B12 + 1

2 + 1
3 + 1

5 + 1
7 + 1

13 = 1

B14 + 1
2 + 1

3 = 2 B16 + 1
2 + 1

3 + 1
5 + 1

17 = −6

We had to go quite far before the right-hand side equals anything other
than 1.
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Stirling numbers of the second kind
The first step in the proof seems to be a bit of a detour. Consider the set
of all equivalence relations on the finite set {1, . . . , k}. That is, we divide
this set up into non-empty subsets, called parts, whose union is the whole
set, and which have empty intersection with each other.

If k = 3, we have equivalence relations

123

12|3, 13|2, 23|1
1|2|3.

If k = 4, we have the equivalence relations

1234

123|4, 124|3, 134|2, 234|1, 12|34, 13|24, 23|14

12|3|4, 13|2|4, 14|2|3, 23|1|4, 24|1|3, 34|1|2
1|2|3.
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Each equivalence relation on {1, . . . , k} has a finite number of parts j ,
which lies between 1 and k .

Definition

The Stirling number of the second kind S(k , j) is the number of
equivalence relations on {1, . . . , k} with j parts.

We see that S(k , j) is a strictly positive if 1 ≤ j ≤ k , and vanishes
otherwise.
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The product x j = x(x − 1) . . . (x − j + 1) is known as the falling power of
x . When x is a natural number, it is related to the binomial coefficient by
the formula

x j = j!

(
x

j

)
.

Theorem

If n and k are natural numbers, then

nk = S(k , k)nk + S(k , k − 1)nk−1 + · · ·+ S(k , 1)n1.

Note that both sides of this formula are polynomials of degree k . Any two
polynomials of degree k which agree at k + 1 different values are equal.
(Their difference is a polynomial of degree at most k, so has at most k
roots unless it is equal to the zero polynomial.)

This shows that both sides are actually equal as polynomials in x :

xk = S(k , k)xk + S(k , k − 1)xk−1 + · · ·+ S(k , 1)x1.
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To prove this formula, we count the number of functions from the set
{1, . . . , k} to the set {1, . . . , n} in two different ways. First of all, there
are obviously nk such functions.

Each such function may also be specified by the following four
independent pieces of data:

1 a natural number j between 1 and k — this is the number of
elements of {1, . . . , n} in the image of the function;

2 an equivalence relation on {1, . . . , k} with j parts — this determines
which elements of {1, . . . , k} map to the same element of {1, . . . , n};

3 a total order of the j parts of the equivalence relation;
4 a subset of {1, . . . , n} of cardinality j .

We may count the number of different assignments of these dats: it is the
sum over j from 1 to k of terms of the form

S(k , j)j!

(
n

j

)
= S(k , j)nj .

Equating these two ways of counting the same set of functions, we obtain
the desired identity.
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For example, the function from {1, 2, 3, 4} to {1, 2, 3} given by the picture

d d d d
d d d

@
@
@
@@

�
�
�
��

�
�

�
��

�
�

�
��

1 2 3 4

1 2 3

Here, j = 2, and the partition is 14|23.
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The sum of powers
1k + · · ·+ nk

is quite complicated.

On the other hand, it is quite easy to calculate the sum of falling powers:

1k + · · ·+ nk =
(n + 1)k+1

k + 1
.

Here is the whole proof:

(n + 1)k+1 − nk+1

= (n + 1)n(n − 1) . . . (n − k + 1)− n(n − 1) . . . (n − k + 1)(n − k)

= ((n + 1)− (n − k)) n(n − 1) . . . (n − k + 1)

= (k + 1)nk .
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Combining this formula with the formula for the power nk as a
combination of falling powers, we obtain the following identity.

Theorem

Σk(n) =
S(k , k)

k + 1
(n + 1)k+1 +

S(k , k − 1)

k
(n + 1)k + · · ·+ S(k, 1)

2
(n + 1)2

Replacing n by n − 1, and adding nk to both sides, we obtain a related
identity

Σk(n) = Σk(n − 1) + nk

= S(k , k)
nk+1

k + 1
+ S(k, k − 1)

nk

k
+ · · ·+ S(k , 1)

n2

2
+ nk .
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The linear term in n in the polynomial nj is (−1)j−1(j − 1)!. If k > 1, we
may extract the linear terms in n on both sides of this identity: on the
left-hand side, we obtain the Bernoulli number Bk .

Theorem

Bk =
k∑

j=1

(−1)j
j!

j + 1
S(k , j)

We will use this expression to prove the Von Staudt-Clausen Theorem.
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We will also need the following formula for the Stirling numbers of the
second kind:

j!S(k , j) =

j∑
i=0

(−1)j−i

(
j

i

)
ik .

To prove this, we insert the expression for ik involving Stirling numbers
and falling powers into the right-hand side.

j∑
i=0

(−1)j−i

(
j

i

)
ik =

j∑
i=0

k∑
`=0

(−1)j−i

(
j

i

)
S(k , `)i `

=
k∑

`=0

`!S(k, `)

j∑
i=0

(−1)j−i

(
j

i

)(
i

`

)

=
k∑

`=0

`!S(k, `)

(
j

`

) j∑
i=0

(−1)j−i

(
j − `
j − i

)
.
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To finish the proof, we use that, by the binomial theorem,

j∑
i=0

(−1)j−i

(
j − `
j − i

)
=

j∑
i=0

(−1)i
(
j − `
i

)
= (1− 1)j−`

=

{
1, j = `,

0, j > `.
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This formula is very useful for calculating S(k, j) for small values of j :

S(k, 2) = 2k−1 − 1

S(k , 3) =
1

2

(
3k−1 + 1

)
− 2k−1.

In particular, we see that if k is even, S(k , 3) is even:

3k−1 + 1 ≡ 0 (mod 4).
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We can now prove the Von Staudt-Clausen theorem.

As a first step, let us show that if k is even and j + 1 is composite, then

j!

j + 1
S(k, j)

is an integer. There are three cases:

1 If j + 1 = ab is composite and a > b, then (ab−1)!
ab is an integer.

2 If j + 1 = a2 is composite and a > 2, then (a2−1)!
a2

is an integer.
Since S(k , j) is always an integer, this completes the proof of the
assertion in these two cases.

3 If j + 1 = 4, then S(k, 3) is even, and hence

j!

j + 1
S(k , j) =

3

2
S(k , 3)

is an integer.
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In this way, we see that only primes j + 1 = p contribute to the expression
for the Bernoulli number, modulo integers:

Bk +
∑

p prime

1

p

p−1∑
i=0

(−1)p−i

(
p − 1

i

)
ik ∈ Z.

Note that ik ≡ ik−(p−1) (mod p). This means that in calculating

p−1∑
i=0

(−1)p−i

(
p − 1

i

)
ik (mod p),

we may as well assume that k lies between 0 and p, by subtracting
multiples of p − 1 from k .
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If (p − 1) - k , then we obtain

p−1∑
i=0

(−1)p−i

(
p − 1

i

)
ik ≡ −(p − 1)!S(k, p − 1) ≡ 0 (mod p),

since we may take k < p− 1, and in this case the Stirling number vanishes.

If (p − 1) | k , then we obtain

p−1∑
i=0

(−1)p−i

(
p − 1

i

)
ip−1 ≡

p−1∑
i=1

(−1)p−i

(
p − 1

i

)
≡ (−1)p−1 (mod p),

completing the proof.
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Hirzebruch’s Formula

Friedrich Hirzebruch (1927–2012) was of one of Germany’s great postwar
mathematicians.
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I want to close this talk with my favorite formula involving Bernoulli
numbers, which was found by Hirzebruch in his thesis. This formula is of
great importance in algebraic geometry, where it lies behind formulas for
counting the number of solutions of algebraic equations.

Theorem (Hirzebruch)

The coefficient of xn in the polynomial(
1 + B1x + B2

x2

2!
+ · · ·+ Bn

xn

n!

)n+1

is 1.

The proof uses the residue theorem of complex analysis. In fact, this
formula gives another characterization of the Bernoulli polynomials.

Thankyou for being such a good audience!
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