LINEAR ALGEBRA HOMEWORK 4 – WEDNESDAY 8/2

LECTURER: BONG H. LIAN

Assume U, V, W are F-vector spaces. Put End V = Hom(V, V).

Exercise 0.1. Find the dimension of $M_{2,2}$ by giving a basis of this vector space. Generalize your result to $M_{k,n}$.

Exercise 0.2. Let $f, g: V \to V$ be two given maps such that $f \circ g = id_V$. (a) Show that g is injective and f is surjective.

(b) Assume in addition that $\dim V < +\infty$ and f is linear. Show that f is injective, hence g is surjective. (Hint: Use COD.)

(c) Conclude that g is bijective, and that $f = g^{-1}$ and $g \circ f = id_V$.

(d) Let $A, B \in M_{n,n}$. Show that if AB = I, then BA = I.

Exercise 0.3. WRITE UP (Transpose) Recall the transpose operation

 $^{T}: M_{2 \times 2} \to M_{2 \times 2}, \quad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \mapsto \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}.$

(a) Show that $(AB)^T = B^T A^T$ for $A, B \in M_{2,2}$.

(b) Prove that A is invertible iff its A^T is invertible. Moreover, in this case $(A^T)^{-1} = (A^{-1})^T$.

(c) Prove that A is invertible iff its rows form a basis of F^2 .

(Hint: Use (a) and the MTC.)

Generalize this.

Exercise 0.4. Decide if $A = [e_3, e_1 + e_2, e_2] \in M_{3,3}$ is invertible. If so, compute A^{-1} .

Exercise 0.5. WRITE UP Let Aut_n be the set of all $n \times n$ invertible matrices over F. For $x \in M_{n,n}$, define

$$[x] := \{\Phi_g(x) = g^{-1}xg | g \in \operatorname{Aut}_n\}$$

called the translation class in $M_{n,n}$ represented by x.

(a) Show that two translation classes are either equal or disjoint. Therefore, every $x \in M_{n,n}$ lies in exactly one translation class, namely [x].

(b) Show that any two matrices in the same class [x] are translates of one another, i.e. if $x', x'' \in [x]$ then $x'' = g^{-1}x'g$ for some $g \in \text{Aut}_n$.

Exercise 0.6. We did this in class, but make sure you can do it too. Let $U \subset V$ be a subspace and $x \in \text{End } V$ such that $xU \subset U$. In 5 lines, prove that the induced map

 $\bar{x}: V/U \to V/U, v + U \mapsto xv + U$

satisfies the following: if $p(t) \in F[t]$, and p(x) = 0 in End V then $p(\bar{x}) = 0$ in End V/U.

Exercise 0.7. By row reduction, compute

$$\det[e_3 + e_2 + e_1, e_1 + e_2, e_2].$$

Redo this it by using linearity of det in each column.

Exercise 0.8. Assume that $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2\times 2}$ is invertible. Find a formula for A^{-1} . That is to say, find each entry of A^{-1} in terms of the 4 entries a_{ij} of A. Be sure to check that you do get $AA^{-1} = A^{-1}A = I$. From this, can you guess the answer for 3×3 matrices.