LINEAR ALGEBRA HOMEWORK 1 - DUE 7/21/2017

LECTURER: BONG H. LIAN

Exercise 0.1. WRITE UP Prove that for $a, a' \in \mathbb{Z}^{\times}$ and $b, b' \in \mathbb{Z}$, the two sets b/a and b'/a' are either disjoint or equal.

Exercise 0.2. Verify that the multiplication rule given by

$$\times: \mathbb{Q}^2 \to \mathbb{Q}, (b/a, b'/a') \mapsto (bb')/(aa')$$

is well-defined.

Exercise 0.3. Consider the map $\iota : \mathbb{Z} \to \mathbb{Q}$, $n \mapsto n/1$. Is \mathbb{Z} injective, surjective? Prove your assertions. Verify the identities

$$\iota(1) = 1/1, \quad \iota(nn') = \iota(n)\iota(n'), \quad n, n' \in \mathbb{Z}.$$

Also express $\iota(n+n')$ in terms of $\iota(n)$, $\iota(n')$.

Exercise 0.4. WRITE UP Assume we have a field \mathbb{C} with properties ($\mathbb{C}1$)-($\mathbb{C}3$). Use N1-N9 to verify that for $z, w \in \mathbb{C}$, z + w = 0 iff w = -z. Now show that for $x, y \in \mathbb{R}$

$$-(x+iy) = -x + i(-y).$$

 $\label{eq:linear_equation} \textit{In fact, in any field } F, \textit{ N1-N9 imply that } -(a+b) = (-a) + (-b) \textit{ and } -(ab) = (-a)b.$

Exercise 0.5. WRITE UP If $u = (u_1, u_2), u' = (u'_1, u'_2) \in \mathbb{R}^2$ are two solutions to $x_1 + x_2 = 1$, what can we say about u - u'? Find a nice (as nice as you can think of) bijection between solution set of this equation and the solution set of its homogeneous "partner" $x_1 + x_2 = 0$. Can you interpret your bijection geometrically? How would you generalize your results?

Exercise 0.6. Let F be a field. For $X,Y,Z\in F^2$ and $\lambda,\mu\in F$, verify that

$$V1. \ (X + Y) + Z = X + (Y + Z)$$

$$V2. \ X + Y = Y + X$$

$$V3. X + 0 = X$$

$$V4. X + (-X) = 0$$

V5.
$$\lambda(X+Y) = \lambda X + \lambda Y$$

V6.
$$(\lambda + \mu)X = \lambda X + \mu X$$

$$V$$
7. $(\lambda \mu)X = \lambda(\mu X)$

$$V8. \ 1X = X.$$

The same holds true for F^n .

Suggestion: Think about exactly what facts about F you need to use to prove each of these statements.

1